Congenital Myasthenic Syndrome Caused by Decreased Agonist Binding Affinity Due to a Mutation in the Acetylcholine Receptor ε Subunit
نویسندگان
چکیده
We describe the genetic and kinetic defects for a low-affinity fast channel disease of the acetylcholine receptor (AChR) that causes a myasthenic syndrome. In two unrelated patients with very small miniature end plate (EP) potentials, but with normal EP AChR density and normal EP ultrastructure, patch-clamp studies demonstrated infrequent AChR channel events, diminished channel reopenings during ACh occupancy, and resistance to desensitization by ACh. Each patient had two heteroallelic AChR epsilon subunit gene mutations: a common epsilon P121L mutation, a signal peptide mutation (epsilon G-8R) (patient 1), and a glycosylation consensus site mutation (epsilon S143L) (patient 2). AChR expression in HEK fibroblasts was normal with epsilon P121L but was markedly reduced with the other mutations. Therefore, epsilon P121L defines the clinical phenotype. Studies of the engineered epsilon P121L AChR revealed a markedly decreased rate of channel opening, little change in affinity of the resting state for ACh, but reduced affinity of the open channel and desensitized states.
منابع مشابه
Mutation of the acetylcholine receptor α subunit causes a slow-channel myasthenic syndrome by enhancing agonist binding affinity
In five members of a family and another unrelated person affected by a slow-channel congenital myasthenic syndrome (SCCMS), molecular genetic analysis of acetylcholine receptor (AChR) subunit genes revealed a heterozygous G to A mutation at nucleotide 457 of the alpha subunit, converting codon 153 from glycine to serine (alpha G153S). Electrophysiologic analysis of SCCMS end plates revealed pro...
متن کاملMutation in the M1 Domain of the Acetylcholine Receptor α Subunit Decreases the Rate of Agonist Dissociation
We describe the kinetic consequences of the mutation N217K in the M1 domain of the acetylcholine receptor (AChR) alpha subunit that causes a slow channel congenital myasthenic syndrome (SCCMS). We previously showed that receptors containing alpha N217K expressed in 293 HEK cells open in prolonged activation episodes strikingly similar to those observed at the SCCMS end plates. Here we use singl...
متن کاملMode Switching Kinetics Produced by a Naturally Occurring Mutation in the Cytoplasmic Loop of the Human Acetylcholine Receptor ε Subunit
We describe the genetic and kinetic defects in a congenital myasthenic syndrome caused by heteroallelic mutations of the acetylcholine receptor (AChR) epsilon subunit gene. The mutations are an in-frame duplication of six residues in the long cytoplasmic loop (epsilon1254ins18) and a cysteine-loop null mutation (epsilonC128S). The epsilon1254 ins18 mutation causes mode switching in the kinetics...
متن کاملSlow-channel myasthenic syndrome caused by enhanced activation, desensitization, and agonist binding affinity attributable to mutation in the M2 domain of the acetylcholine receptor alpha subunit.
We describe a novel genetic and kinetic defect in a slow-channel congenital myasthenic syndrome. The severely disabled propositus has advanced endplate myopathy, prolonged and biexponentially decaying endplate currents, and prolonged acetylcholine receptor (AChR) channel openings. Genetic analysis reveals the heterozygous mutation alphaV249F in the propositus and mosaicism for alphaV249F in the...
متن کاملCongenital myasthenic syndromes: recent advances.
Congenital myasthenic syndromes (CMS) can arise from presynaptic, synaptic, or postsynaptic defects. Mutations of the acetylcholine receptor (AChR) that increase or decrease the synaptic response to acetylcholine (ACh) are a common cause of the postsynaptic CMS. An increased response occurs in the slow-channel syndromes. Here, dominant mutations in different AChR subunits and in different domai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 17 شماره
صفحات -
تاریخ انتشار 1996